Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj

Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego

Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego
Kategorie: Matematyka , Poradniki
Isbn: 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0, 978-83-246-3404-0
Ean: 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040, 9788324634040
Liczba stron: 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152, 152
Format: 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

,

Popularnonaukowa książka o dowodach matematycznych

  • Trzydzieści wybranych twierdzeń matematycznych z pełnymi dowodami
  • Trzy główne typy dowodów: dowody wprost, dowody przez sprowadzenie do niedorzeczności i dowody indukcyjne
  • Opowieści o niewymierności liczby i liczby e, nieprzeliczalności zbioru liczb rzeczywistych, twierdzeniu Pitagorasa, nieskończoności zbioru liczb pierwszych i inne
Profesor na wykładzie myśli A, mówi B, a na tablicy pisze C. A student słyszy D, widzi E, do kajetu pisze F, a i tak nic z tego nie rozumie.
prof. L. Jeśmanowicz

Większości z nas matematyka kojarzy się ze zlepkiem niezrozumiałych twierdzeń, ślęczeniem nad zeszytami i strużką potu na czole podczas zmagań pod tablicą. W dodatku - bez względu na to, czy darzysz królową nauk gorącą miłością, czy też nie - na którymś etapie życia po prostu musisz ją zaliczyć. Jednak nie ma co drzeć szat i wylewać krokodylich łez.

Pozaszkolna matematyka to naprawdę świetna zabawa, sensacyjne odkrycia i fascynujące opowieści. Nie na darmo przecież matematyk i publicysta Michał Szurek twierdzi, że "matematyka jest jedyną humanistyczną nauką ścisłą". Trudno Ci w to uwierzyć? W takim razie potrzebujesz dowodu! Książeczka, którą trzymasz w ręku, jest Twoim biletem wstępu do tej części matematyki, która większości (także wykształconych) ludzi wydaje się niedostępna, a może nawet dziwna.

I jeśli pragniesz ją jak najszybciej odłożyć, dowiedz się, że jest ona właśnie dla Ciebie! Zamieszczone tu dowody czyta się jak zwykłe opowieści, choć nie skutkuje to najmniejszym uszczerbkiem na ich ścisłości. Dla zrozumienia wszystkich dowodów wystarcza znajomość matematyki na poziomie szkoły średniej, a większość rozdziałów jest odpowiednia także dla gimnazjalistów. Po lekturze niektóre matematyczne zawiłości zaczniesz rozgryzać w sposób iście lekkoatletyczny - "Rzut oka na tablicę i wszystko widać".


Dariusz Laskowski jest absolwentem Wydziału Matematyki Uniwersytetu Mikołaja Kopernika w Toruniu, nauczycielem matematyki z wieloletnim doświadczeniem wciąż zafascynowanym swoim przedmiotem, jest też autorem kilkunastu artykułów zamieszczonych w "Delcie", "Matematyce w Szkole", "Magazynie Miłosników Matematyki", "Matematyce - Czasopiśmie dla nauczycieli".

W swojej książce Jak tego dowieść - krótka opowieść. Dowody matematyczne dla każdego w taki sposób przybliża Czytelnikowi metody dowodowe stosowane w matematyce, że można czytać z przyjemnością ich rozumienia.

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Rok wydania: 2012
Wydawca: Helion, ebookpoint
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele