Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj

Metody automatycznego rozpoznawania wzorców

Metody automatycznego rozpoznawania wzorców
Isbn: 9788389968753, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3, 978-8-3899-6875-3
Ean: 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753, 9788389968753
Liczba stron: 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210, 210
Format: 17.0x24.0cm

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

,

Przedstawiono metody automatycznego rozpoznawania wzorców znajdujące zastosowanie zwłaszcza w zadaniach rozpoznawania obrazów, rozpoznawania mowy i rozpoznawania mówcy. Szczegółowo omówiono zastosowanie sztucznych sieci neuronowych jako klasyfikatorów. Przedstawiono m.in budowę preceptoru, regułę uczenia Widrowa-Hoffa i metodę wstecznej propagacji błędów. Uzyskiwane w sztucznych sieciach neuronowych rozwiązania porównano z rozwiązaniami bazującymi na metodach bayesowskich, metodzie największej wiarygodności oraz idei klasyfikacji i grupowania minimalnoodległościowego.

Oddzielną część książki poświęcono problemom rozpoznawania na podstawie modeli układów generujących obserwowane sygnały. Do tej grupy zagadnień należy tworzenie przestrzeni cech złożonej ze współczynników LPC, a także budowa ukrytych modeli Markowa.

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Rok wydania: 2007
Wydawca: BEL, Helion
Miejsce wydania: Warszawa
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele