Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj
Hit dnia
Ostatnio oglądane
lsnienia.jpg
Cena: 31,20 zł
na-fejsie-z-moim-synem-1.jpg
Cena: 14,60 zł
bn167623.jpg
Cena: 35,10 zł
living-in-space.jpg
Cena: 25,90 zł
chan-al-chalili.jpg
Cena: 35,90 zł
odwet-oceanu-1.jpg
Cena: 53,90 zł
orbital-6-opor.jpg
Cena: 33,80 zł
bn154616.jpg
Cena: 27,90 zł

Uczenie maszynowe dla programistów

Uczenie maszynowe dla programistów
Isbn: 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5, 978-83-246-9816-5
Ean: 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165, 9788324698165
Liczba stron: 302, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280, 280
Format: 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237, 168x237

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

,

Wyciągnij najlepsze wnioski z dostępnych danych!

Maszyna myśląca jak człowiek to marzenie ludzkości. Dzięki dzisiejszej wiedzy i dostępnym narzędziom wciąż przybliżamy się do jego spełnienia. Zastanawiasz się, jak nauczyć maszynę myślenia? Jak sprawić, żeby podejmowała trafne decyzje oraz przewidywała najbliższą przyszłość na podstawie przygotowanych modeli? Na to i wiele innych pytań odpowiada ta wspaniała książka.

Dzięki niej poznasz język R, nauczysz się eksplorować dostępne dane, określać wartość mediany i odchylenia standardowego oraz wizualizować powiązania między kolumnami. Gdy opanujesz już solidne podstawy teoretyczne, możesz śmiało przejść do kolejnych rozdziałów i zapoznać się z klasyfikacją binarną, tworzeniem rankingów oraz modelowaniem przyszłości przy użyciu regresji. Ponadto zrozumiesz, jak tworzyć systemy rekomendacyjne, analizować sieci społeczne oraz łamać szyfry. Książka ta jest doskonałą lekturą dla pasjonatów analizy danych i wyciągania z nich wniosków.

Każdy rozdział książki jest poświęcony konkretnemu zagadnieniu uczenia maszynowego: klasyfikacji, predykcji, regresji, optymalizacji i wreszcie rekomendacji. Czytelnik nauczy się konstruować proste algorytmy uczenia maszynowego (i przepuszczać przez nie próbki danych) za pomocą języka programowania R. Uczenie maszynowe dla programistów jest więc znakomitą lekturą dla programistów parających się czy to projektami komercyjnymi, czy to rządowymi, czy wreszcie akademickimi.
  • Skonstruuj prosty klasyfikator bayesowski odróżniający wiadomości treściwe od niechcianych na podstawie ich zawartości.
  • Używaj regresji liniowej do przewidywania liczby odwiedzin najpopularniejszych stron WWW.
  • Naucz się optymalizacji, próbując złamać prosty szyfr literowy.
  • Statystycznie skonfrontuj poglądy polityków, używając rejestru głosowań.
  • Zbuduj system rekomendacji wartościowych twitterowców.

Naucz się czytać i analizować dane!

Książka ta stanowi świetny przegląd przypadków i tuzina różnych technik uczenia maszynowego. Jest ukierunkowana na proces dochodzenia do rozwiązania, a nie gotowe recepty ani abstrakcyjne teorie; dzięki temu jej materiał jest dostępny dla wszystkich programistów, ale też przysłowiowych „umysłów ścisłych”

— Max Shron, OkCupid

 

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Wydawca: Helion, ebookpoint
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele