Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj
Hit dnia
certyfikat-1.jpg
Cena: 0,90 zł
certyfikat-2.jpg
Cena: 1,80 zł
Ostatnio oglądane
pojazdy-15-1.jpg
Cena: 4,30 zł
sprawny-umysl.jpg
Cena: 10,70 zł
ex-machina-blu-ray.jpg
Cena: 54,00 zł
a-spy-named-orphan-1.jpg
Cena: 40,10 zł
bn283597.jpg
Cena: 1,90 zł
BN197700.jpg
Cena: 16,90 zł
mindset.jpg
Cena: 48,60 zł
bn221237.jpg
Cena: 17,70 zł

Python. Uczenie maszynowe

Python. Uczenie maszynowe
Kategorie: Fotografia
Isbn: 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1, 978-83-283-3613-1
Ean: 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131, 9788328336131
Liczba stron: 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416, 416
Format: 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230, 170x230

Sprawdź drugie wydanie tej książki >>

---

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!


Sebastian Raschka jest ekspertem w dziedzinie analizy danych i uczenia maszynowego. Obecnie przygotowuje doktorat na Michigan State University z metod obliczeniowych w biologii statystycznej. Biegle posługuje się Pythonem. Raschka bierze również udział w różnych projektach open source i wdraża nowe metody uczenia maszynowego. W wolnym czasie pracuje nad modelami predykcyjnymi dyscyplin sportowych. Jeżeli nie siedzi przed monitorem, chętnie uprawia sport.

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

,

Uczenie maszynowe, zajmujące się algorytmami analizującymi dane, stanowi chyba najciekawszą dziedzinę informatyki. W czasach, w których generuje się olbrzymie ilości danych, samouczące się algorytmy maszynowe stanowią wyjątkową metodę przekształcania tych danych w wiedzę. W ten sposób powstało wiele innowacyjnych technologii, a możliwości uczenia maszynowego są coraz większe. Nieocenioną pomoc w rozwijaniu tej dziedziny stanowią liczne nowe biblioteki open source, które pozwalają na budowanie algorytmów w języku Python, będącym ulubionym, potężnym i przystępnym narzędziem naukowców i analityków danych.

Niniejsza książka jest lekturą obowiązkową dla każdego, kto chce rozwinąć swoją wiedzę o danych naukowych i zamierza w tym celu wykorzystać język Python. Przystępnie opisano tu teoretyczne podstawy dziedziny i przedstawiono wyczerpujące informacje o działaniu algorytmów uczenia maszynowego, sposobach ich wykorzystania oraz metodach unikania poważnych błędów. Zaprezentowano również biblioteki Theano i Keras, sposoby przewidywania wyników docelowych za pomocą analizy regresywnej oraz techniki wykrywania ukrytych wzorców metodą analizy skupień. Nie zabrakło opisu technik przetwarzania wstępnego i zasad oceny modeli uczenia maszynowego.

W tej książce:

  • podstawowe rodzaje uczenia maszynowego i ich zastosowanie,
  • biblioteka scikit-learn i klasyfikatory uczenia maszynowego,
  • wydajne łączenie różnych algorytmów uczących,
  • analiza sentymentów — przewidywanie opinii osób na podstawie sposobu pisania,
  • praca z nieoznakowanymi danymi — uczenie nienadzorowane,
  • tworzenie i trenowanie sieci neuronowych.

Uczenie maszynowe — odkryj wiedzę, którą niosą dane!

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Wydawca: ebookpoint
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele