Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj

Data Science i uczenie maszynowe

Data Science i uczenie maszynowe
Isbn: 9788301192327, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7, 978-8-3011-9232-7
Ean: 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327, 9788301192327
Liczba stron: 450, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372, 372
Format: 16.5x23.5cm

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

,

XXI wiek to czas sztucznej inteligencji. Nie tylko tej specjalistycznej, która kieruje samochodami, tłumaczy języki naturalne czy szuka leku na raka, ale również uniwersalnej, rozwiązującej zadania z różnych dziedzin. Ten przełom zawdzięczamy splotowi trzech zdarzeń: rozwojowi technologii przechowywania i przetwarzania danych, nowej metodzie naukowej (data science), oraz uczeniu maszynowemu, w szczególności znacznemu postępowi w zakresie głębokiego uczenia maszynowego. Książka przedstawia uczenie maszynowe w ujęciu praktycznym. Przeprowadzając opisane w niej eksperymenty data science poznamy zastosowanie reguł statystycznych i algorytmów uczenia maszynowego do rozwiązywania konkretnych problemów. Takie podejście oznacza, że studenci informatyki oraz specjaliści analitycy, informatycy i bazodanowcy zdobędą nie tylko teoretyczną wiedzę, ale również umiejętność jej praktycznego wykorzystania w codziennej pracy. Książka podzielona jest na cztery części: Pierwszy rozdział wyjaśnia termin Data science i pokazuje zastosowanie tej metody w eksperymentach naukowych. Rozdziały od drugiego do czwartego poświęcone są danym: technikom oceny ich jakości, wstępnego przygotowania oraz wzbogacenia danych na potrzeby ich dalszej analizy. Rozdziały od piątego do dziewiątego opisują poszczególne typy modeli predykcyjnych: klasyfikatory, regresory, modele grupujące, rekomendujące i prognozujące. Ostatnie dwa rozdziały książki przedstawiają metody oceny i poprawy jakości modeli oraz udostępniania ich użytkownikom jako usług WWW.

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Wydawca: PWN Wydawnictwo Naukowe, ebookpoint
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele