Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe. , Książka jest poświęcona metodom konstruowania uczących się programów komputerowych, zdolnych do poprawy swego działania na podstawie doświadczeń z przeszłości. Programy tego typu w zautomatyzowany sposób zdobywają wiedzę, którą wykorzystują do realizacji postawionych przed nimi zadań.
Autor przybliża czytelnikowi proces uczenia się systemów z algorytmicznego punktu widzenia. Wyjaśnia, na czym polega indukcyjne uczenie się. Przedstawia dwa główne podejścia do tego zagadnienia: indukcję drzew decyzyjnych i indukcję reguł decyzyjnych. Omawia probabilistyczne metody uczenia się, a także metody grupowania pojęciowego. Zajmuje się problemami przekształcania zbioru atrybutów. Przedstawia wybrane algorytmy uczenia się aproksymacji funkcji. Opisuje odkrywanie zależności w danych i uczenia się automatów i problem uczenia się systemów ze wzmocnieniem.
Wartość merytoryczną książki podnoszą liczne ćwiczenia, podzielone na tradycyjne, laboratoryjne i projektowe.
Księgarnia internetowa "booknet.net.pl" ul.Kaliska 12 98-300 Wieluń |
Godziny otwarcia: pon-pt: 9.00-17.00 w soboty 9.00-13.00 |
Dane kontaktowe:![]() ![]() ![]()
|