Koszyk
ilosc: 0 szt.  suma: 0,00 zł
Witaj niezarejestrowany
Przechowalnia
Tylko zalogowani klienci sklepu mogą korzystać z przechowalni
wyszukiwarka zaawansowana
Wszędzie
Wszędzie Tytuł Autor ISBN
szukaj

Elementy analizy tensorowej

Elementy analizy tensorowej
Isbn: 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914
Ean: 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914, 9788323534914
Liczba stron: 424
Format: 27.6x15.4

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

,

Podręcznik akademicki będący znacznym rozszerzeniem wykładu prowadzonego od wielu lat dla studentów fizyki i astronomii Uniwersytetu Jagiellońskiego. Zawiera unowocześniony kurs przeznaczony dla wszystkich, którzy używają tensorów w naukach fizycznych i technicznych. Czytelnicy znający analizę matematyczną i algebrę liniową w zakresie standardowego kursu politechnicznego znajdą tu szczegółowe wyjaśnienie, czym jest rozmaitość różniczkowa, wektor i tensor oraz dlaczego wektor nie należy do przestrzeni, w której punktach jest zdefiniowany. Dużo uwagi poświęcono tu również zagadnieniom, które w tradycyjnych wykładach rachunku tensorowego są zazwyczaj pomijane: pochodnej Liego i jej związkom z symetriami i prawami zachowania, tensorom względnym i znajdowaniu linii geodezyjnych. Dodatkiem do głównego tekstu są liczne starannie przeliczone przykłady oraz wiele zadań. Ostatni rozdział, zachowując podręcznikowy, dydaktyczny charakter, jest zarazem monografią zastosowań analizy tensorowej do badania krzywizny i symetrii przestrzeni Riemanna oraz czasoprzestrzeni. Podręcznik ten będzie interesujący także dla matematyków, stanowi bowiem etap pośredni między klasyczną geometrią w przestrzeni trójwymiarowej a nowoczesną abstrakcyjną geometrią różniczkową rozmaitości.

Oprawa: miękka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka, miďż˝kka
Wydawca: Wydawnictwo Uniwersytetu Warszawskiego, ebookpoint
Brak na magazynie
Dane kontaktowe
Księgarnia internetowa
"booknet.net.pl"
ul.Kaliska 12
98-300 Wieluń
Godziny otwarcia:
pon-pt:  9.00-17.00
w soboty 9.00-13.00
Dane kontaktowe:
tel: 43 843 1991
fax: 68 380 1991
e-mail: info@booknet.net.pl

 

booknet.net.pl Razem w szkole Ciekawa biologia dzień dobry historio matematyka z plusem Nowe już w szkole puls życia między nami gwo świat fizyki chmura Wesoła szkoła i przyjaciele